Homework 9, due 11/28

- 1. Consider the cover $\mathfrak{U} = \{U_1, U_2\}$ of \mathbf{P}^1 given by $U_1 = \mathbf{P}^1 \setminus \{\infty\}$ and $U_2 = \mathbf{P}^1 \setminus \{0\}$. Show that $H^1(\mathfrak{U}, \mathcal{O}) = 0$.
- 2. (a) Show that dz defines a meromorphic one-form on \mathbf{P}^1 , with no zeros, and a double pole at ∞ .
 - (b) Let α be any meromorphic one-form on \mathbf{P}^1 . Show that

$$\sum_{p \in \mathbf{P}^1} \operatorname{ord}_p \alpha = -2$$

Hint: show that $\alpha = f dz$ for a meromorphic function f.

- (c) Let $p_1, \ldots, p_k \in \mathbf{P}^1$, and $a_1, \ldots, a_k \in \mathbf{Z}$, satisfying $\sum_i a_i = -2$. Can you find a meromorphic one-form α on \mathbf{P}^1 such that $\operatorname{ord}_{p_i} \alpha = a_i$ for each i, and $\operatorname{ord}_p \alpha = 0$ for all other p?
- 3. Consider the one-form $\alpha = \bar{z}dz$ on **C**.
 - (a) Does there exist a function $f : \mathbf{C} \to \mathbf{C}$ such that $\alpha = df$?
 - (b) Does there exist $f : \mathbf{C} \to \mathbf{C}$ such that $\alpha = \partial f$?
- 4. Let $X = \mathbf{C}/\Lambda$ be a complex torus, where $\Lambda = \{m_1w_1 + m_2w_2 : m_1, m_2 \in \mathbf{Z}\}$ for $w_1, w_2 \in \mathbf{C}$, and $\operatorname{Im}(w_1/w_2) > 0$.
 - (a) Recall that $dz, d\bar{z}$ define one-forms on X. Compute

$$\int_X dz \wedge d\bar{z}.$$

(b) Suppose that α is a meromorphic one-form on X. Show that

$$\sum_{p \in X} \operatorname{ord}_p \alpha = 0.$$

- (c) Just as in question 2(c), suppose that $p_1, \ldots, p_k \in X$, and $a_1, \ldots, a_k \in \mathbb{Z}$ satisfy $\sum_i a_i = 0$. Is there a meromorphic one-form α on X such that $\operatorname{ord}_{p_i} \alpha = a_i$ for each i, and $\operatorname{ord}_p \alpha = 0$ for all other p?
- 5. Suppose that α is a (1,0)-form on a compact Riemann surface X.
 - (a) If in a local holomorphic chart $\alpha = \alpha_z dz$, define $\overline{\alpha} = \overline{\alpha_z} d\overline{z}$. Show that $\overline{\alpha}$ defines a (0,1)-form on X, i.e. check that the coordinate representations of $\overline{\alpha}$ satisfy the right compatibility condition.
 - (b) Show that

$$\int_X \frac{i}{2} \alpha \wedge \overline{\alpha} \ge 0$$

with equality only if $\alpha = 0$.